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1 Introduction

These are some results I found while trying to prove that (Z/nZ)∗ always has a generator for prime
n. Also some assorted results that I bumped into while just exploring.

2 Notation

Kernel
Where f is an automorphism : H → H

Ker(f) = {x : x ∈ H, f(x) = eH}

Polynomial
deg(f) = the degree of polynomial f

sol(f) = number of solutions of polynomial f

3 Generator for field

F is a field with commutative multiplication
Let F× denote the multiplicative group
Let n = |F×| and n = pm1

1 pm2
2 ... pmi

i

3.1 Product

Since F× is abelian we can break it up into kernels (Check my previous write up ”kernels”)

F× ∼= Ker(xp
m1
1 )×Ker(xp

m2
2 )× ...×Ker(xp

mi
i )

3.2 Ker(xp
mi
i ) ∼= Cp

mi
i

Let A = Ker(xp
mi
i )

Assume that A ̸∼= Cp
mi
i

̸ ∃g ∈ A such that |g| = pmi
i

So
For all x ∈ A, |x| < pmi

i
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Also
For all x ∈ A, |x| divides |A| (|A| = pmi

i )

Putting these to together
For all x ∈ A, |x| divides pmi−1

i

This means that
For all x ∈ A, xp

mi−1

i = 1

f(x) = xp
mi−1

i − 1
f(x) has a solution for every element in A

This means
sol(f) ≥ |A|

sol(f) ≥ pmi
i

And also
deg(f) = pmi−1

i

So
deg(f) < sol(f)

Contradiction as

For all polynomials g with coefficients in a field sol(g) ≤ deg(g) (Check previous write up ”Polynomials”)

This means that
Ker(xp

mi
i ) ∼= Cp

mi
i

3.3 F× has a generator

F× ∼= Ker(xp
m1
1 )×Ker(xp

m2
2 )× ...×Ker(xp

mi
i )

With 3.1
F× ∼= Cp

m1
1

× Cp
m2
2

× ...× Cp
mi
i

products of coprime cyclic groups are cyclic

F× ∼= Cn

So
For any field with commutative multiplication F , F× is cyclic
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4 Additive groups

F is a field with not necessarily commutative multiplication (I think there is a term for this)
F+ denotes the additive group
1 is multiplicative identity

4.1 < 1 >+
∼= Cp

Assume |1| is composite
|1| = ab

let

x =

a∑
i=0

1 and y =

b∑
i=0

1

Then

xy =

ab∑
i=0

1 = 0

Since x, y ∈ F× and 0 ̸∈ F× this is a contradiction

|1| = p (prime)

< 1 >+
∼= Cp

4.2 For all x |1| divides |x|
For all non zero x ∈ F

|x|∑
i=0

x = 0

x

|x|∑
i=0

1 = 0

|x|∑
i=0

1 = 0

|1| divides |x|
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4.3 For all x |x| = p

|1|∑
i=0

1 = 0

For all nonzero x ∈ F
|1|∑
i=0

x = 0

|x| divides |1|

In conjunction with 4.2 ad 4.1
|x| = |1| = p

4.4 F+
∼= Cp

m

Since for all x ∈ F+, |x| = p
< x >+

∼= Cp

So F+ can be split into disjoint subgroups of Cp

F+
∼= Cp × Cp × ... × Cp

5 Recap

For any field F with commutative multiplication

F+
∼= Cp

m and F× ∼= Cpm−1

This is kinda cool because any field’s addition can be represented as a vector space over Cp. Also
the multiplication on a field is a set of liner transformations over that vector space (aka a matrix).
So it seems that any field can be written as a field of matrices over Cp.
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