
2. Factoring Polynomials in Arbitrary Fields

Patrick Dugan

1 Introduction

These are some results I got while messing around with polynomials. I originally came up with this
only for polynomials with rational coefficients, but later while doing a different problem realized it
generalises to any field (commutative multiplication).

This is a continuation of a previous post about kernels. It can be read on its own, but is part of
a much larger proof.

2 Notation

For a polynomial f(x), fn denotes its nth coefficient

f(x) =
∑
i=0

fix
i

Degree of polynomial f
deg(f)

Number of Solutions
sol(f)

Other notation will be elaborated later

3 Minimum Polynomial

3.1 Define

For field F and field H (F ⊆ H) an element k can have a minimum polynomial of F denoted MF (k)
but for ease when it is obvious that it is of F it will be noted

P k(x)

What this means is that the polynomial P k(x) is the smallest degree, non zero polynomial, with
coefficients in F such that P k(k) = 0. Also the leading coefficient is 1 (or the multiplicative identity).
This last criteria is pretty easy to meet as one can simply divide both sides by the leading coefficient
to make sure it is 1.

It short it is the smallest degree polynomial that is solved by k.
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3.2 f(k) = 0, deg(f) < deg(P k) ⇒ f(x) = 0

Given: f(k) = 0 and deg(f) < deg(P k) (coefficients of f are in F)
There cannot be a non zero polynomial smaller than P k (with k as a sol)

f(x) is not a non zero polynomial

f(x) = 0

3.3 f(k) = 0, deg(f) = deg(P k) ⇒ f(x) = cP k(x)

Given: f(k) = 0 and deg(f) = deg(P k) = n (coefficients of f are in F)

f(x) =

n∑
i=0

fix
i

Trying to cancel some stuff out lets define polynomial g such that

g(x) = f(x)− fnP
k(x)

Expanding (remember leading coefficient in P k(x) is 1)

g(x) =

n∑
i=0

fix
i − fnx

n +

n−1∑
i=0

−fncix
i

Simplify

g(x) =

n−1∑
i=0

(fi − fnci)x
i

Then
deg(g) < n = deg(P k)

Also g(k) = 0
g(k) = f(k)− fnP

k(k) = 0

So using 3.2
g(x) = 0

Finally since g(x) = f(x)− fnP
k(x)

0 = f(x)− fnP
k(x)

f(x) = fnP
k(x)

This shows us that all other polynomials that k solves with the same degree as it’s minimum
polynomial are just scaled versions of its minimum polynomial.
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3.4 Generalizing

Given: f(k) = 0 and deg(f) = m ≥ deg(P k) = n (coefficients of f are in F)
With the exact same logic as in 3.3 we define polynomial g such that

g(x) = f(x)− fmxm−nP k(x)

And like in 3.3
deg(g) < deg(f), g(k) = 0, and coefficients of g(x) are in F

Moving around we get
f(x) = g(x) + fmxm−nP k(x)

This means that for any polynomial (coefficients in F) where f(k) = 0, There exists a ∈ F , n ∈
N, and g(x) such that

f(x) = g(x) + axnP k(x)

where deg(g) < deg(f), g(k) = 0, and coefficients of gi ∈ F

4 Factoring

Now we are going to use the idea above with induction to factor polynomials.

1. Inductive Assumption
Assume that all polynomials f(x) where 1 ≤ deg(f) ≤ m and f(k) = 0 can be written as
f(x) = g(x)P k(x) st g is some polynomial where deg(f) = deg(g) + deg(P k)

2. Recursive Case
Take polynomial f(x) with deg(f) = m+ 1, f(k) = 0, and let n = deg(P k)
Define some a(x) st

a(x) = f(x)− fmxm+1−nP k(x)

Since the lead term in f(x) canceled out deg(a) ≤ m

deg(a) < deg(f)

deg(a) ≤ m

and by evaluation a(k) = 0

a(k) = f(k)− fmkm+1−nP k(k) = 0− 0 = 0

by the Inductive assumption a(x) = b(x)P k(x)

b(x)P k(x) = f(x)− fmxm+1−nP k(x)

(b(x) + fmxm+1−n)P k(x) = f(x)
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Set g(x) = b(x) + fmxm+1−n

f(x) = g(x)P k(x)

Since (inductive assumption) deg(b) = m− n < m+ 1− n

deg(g) = deg(b+ fmxm+1−n) = max(deg(b), deg(fmxm+1−n))

= deg(fmxm+1−n)) = m+ 1− n

deg(f) = m+ 1 = m+ 1− n+ n = deg(g) + deg(P k)

Finally for all polynomial f(x) where deg(f) ≤ m+ 1, f(k) = 0

f(x) = g(x)P k(x) where g is some polynomial

deg(f) = deg(g) + deg(P k)

3. Base Case
By 3.3 For all f(x) st f(k) = 0 and deg(f) = deg(P k), let the lead term of f(x) be c

f(x) = cP k(x)

g(x) = c

f(x) = g(x)P k(x)

deg(f) = deg(P k) = deg(g) + deg(P k)

All together

For any polynomial f(x) with coefficients in field F and where f(k) = 0,

f(x) = g(x)P k(x) and deg(f) = deg(g) + deg(P k)

where g(x) is some polynomial with coefficients in F

This allows us to factor out solutions for polynomials in an arbitrary fields. We are being extra careful
with the degrees adding up as, even though it may feel obvious, when working with a polynomial
in modular arithmetic (or any finite field) where often degrees can be simplified via Fermat’s little
theorem, such a fact needs some securing.

4.1 With Rationals

I originally developed these tools for polynomials with rational coefficients to explain a cool pattern
I found with rational polynomials. I noticed that irrational solutions to quadratics tend to come in
pairs.
For instance I noticed that if

f(
√
2) = 0

then,
f(−

√
2) = 0
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This is because of the minimum polynomial of
√
2 which we can find.

We know that
√
2 solves x2 − 2 so its minimum polynomial is either degree 1 or 2

If it were degree 1 it would have to be
x−

√
2

Since
√
2 is not rational this polynomial cant be a minimum polynomial.

deg(P
√
2) = 2

And thus
P

√
2(x) = x2 − 2

So if a rational polynomial f(x) has a solution of
√
2

f(x) = g(x)P
√
2(x)

But here is the interesting part P
√
2(x) has more solutions then just

√
2. −

√
2 also is a solution so

f(−
√
2) = g(−

√
2)P

√
2(−

√
2) = 0

With this I devised a pretty cool math problem to stump my friends

f(x) = x4 + ax3 + bx2 + cx+ d where a, b, c, d ∈ Q

f(
√
2) = 0, f(ϕ) = 0 (ϕ is golden ratio)

solve for a,b,c, and d

4.2 On a more complex note

Also there is some interesting finds when looking at polynomials with real coefficients aka (F =
R, H = C)
Take complex number z

z = a+ ib

The minimum polynomial can not be degree 1

x− z does not have real coefficients

But looking at conjugates (z = a− ib)

(x− z)(x− z) = x2 +−2ax+ a2 + b2

This is a real polynomial so
P z(x) = (x− z)(x− z)

This means that for any real polynomial f

f(z) = 0 ⇒ f(z) = 0
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5 Solutions for nth degree polynomial

5.1 Intro

Some may feel this derivation is overkill but it kind of needs to be. On a arbitrary field weird things
may happen like (x4 ≡ 1 mod 5) aka the degree may be deceiving, but with the strict inequalities
we develop this can be helped.

We are going to be doing this via proof by contradiction.

Assume there is a polynomial f(x) with coefficients in some field F st

sol(f) = m > deg(f) = n

where sol(f) is the number of solutions in F.
We will label the solutions like so

f(ki) = 0, ki ∈ F

Also it is required that 1 ≤ deg(f) as we will need the factoring result from (4.0).

Although it feels useless to look at minimum polynomials in F as they are just going to be linear
but bare with it. So with the weird notation we are defining P k(x) = MF (k)

5.2 Minimum Polynomials

Since we are looking at the minimum polynomials with coefficients in F (and ki is in F) things are
pretty easy

P ki(x) = x− ki

deg(P ki) = 1

done

5.3 Factoring

Ok we are going to do this a little recursively (f(x) = 0f(x)) First applying 4.0 to 0f(x)

0f(x) = P k0(x)(1f(x))

And then applying again to 1f(x)

1f(x) = P k1(x)(2f(x))

Continuing

if(x) = P ki(x)(i+1f(x))

And also because of 4.0
deg(if(x)) = deg(P ki) + deg(i+1)f(x))

Since we know what P ki is

if(x) = (x− ki)(i+1f(x))
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deg(if) = 1 + deg(i+1f)

Working this around
deg(if) = deg(0f)− i

deg(0f) = n
deg(if) = n− i

Since deg(nf) = 0

nf(x) = c (some constant)

Expanding out

0f(x) = (x− k0)(x− k1) ... (x− kn−1)(nf(x))

0f(x) = (x− k0)(x− k1) ... (x− kn−1)c

5.4 sol(f) ≤ deg(f)

Since f(x) has more than n solutions, then kn (the n+1 th solution) should work

f(kn) = 0

But since 0 is not in the multiplicative group

(kn − k0)(kn − k1) ... (kn − kn−1)c ̸= 0

This is a contradiction so
For any polynomial f , sol(f) ≤ deg(f)
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